10 research outputs found

    Dark-bright discrete solitons: a numerical study of existence, stability and dynamics

    Get PDF
    the present work, we numerically explore the existence and stability properties of different types of configurations of dark-bright solitons, dark-bright soliton pairs and pairs of dark-bright and dark solitons in discrete settings, starting from the anti-continuum limit. We find that while single discrete dark-bright solitons have similar stability properties to discrete dark solitons, their pairs may only be stable if the bright components are in phase and are always unstable if the bright components are out of phase. Pairs of dark-bright solitons with dark ones have similar stability properties as individual dark or dark-bright ones. Lastly, we consider collisions between dark-bright solitons and between a dark-bright one and a dark one. Especially in the latter and in the regime where the underlying lattice structure matters, we find a wide range of potential dynamical outcomes depending on the initial soliton speed.MICINN project FIS2008-0484

    Overdamped deterministic ratchets driven by multifrequency forces

    Get PDF
    Presented at the XVIII Marian Smoluchowski Symposium on Statistical Physics, Zakopane, Poland, September 3–6, 2005We investigate a dissipative, deterministic ratchet model in the overdamped regime driven by a rectangular force. Extensive numerical calculations are presented in a diagram depicting the drift velocity as a function of a wide range of the driving parameter values. We also present some theoretical considerations which explain some features of the mentioned diagram. In particular, we proof the existence of regions in the driving parameter space with bounded particle motion possessing zero current. Moreover, we present an explicit analytical expression for the drift velocity in the adiabatic limit.Ministerio de Educación y Ciencia of Spain (FIS2005-02884) and the Junta de Andalucía. Also acknowledges the Ministerio de Educación y Ciencia o f Spain for a contract under the Juan de la Cierva program

    Discrete breathers collisions in nonlinear Schrödinger and Klein-Gordon lattices

    Get PDF
    Collisions between moving localized modes (moving breathers) in non- integrable lattices present a rich outcome. In this paper, some features of the interaction of moving breathers in Discrete Nonlinear Schrödinger and Klein- Gordon lattices, together with some plausible explanations, are exposed

    Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model

    Get PDF
    We study nonsymmetric collisions of moving breathers (MBs) in the Peyrard-Bishop DNA model. In this paper we have considered the following types of nonsymmetric collisions: head-on collisions of two breathers traveling with different velocities; collisions of moving breathers with a stationary trapped breather; and collisions of moving breathers traveling with the same direction. The various main observed phenomena are: one moving breather gets trapped at the collision region, and the other one is reflected; breather fusion without trapping, with the appearance of a new moving breather; and breather generation without trapping, with the appearance of new moving breathers traveling either with the same or different directions. For comparison we have included some results of a previous paper concerning to symmetric collisions, where two identical moving breathers traveling with opposite velocities collide. For symmetric collisions, the main observed phenomena are: breather generation with trapping, with the appearance of two new moving breathers with opposite velocities and a stationary breather trapped at the collision region; and breather generation without trapping, with the appearance of new moving breathers with opposite velocities. A common feature for all types of collisions is that the collision outcome depends on the internal structure of the moving breathers and the exact number of pair-bases that initially separates the stationary breathers when they are perturbed. As some nonsymmetric collisions result in the generation of a new stationary trapped breather of larger energy, the trapping phenomenon could play an important part of the complex mechanisms involved in the initiation of the DNA transcription processes.MICIN

    New classes of stable exact solutions for a nonlinear rotational DNA model

    Get PDF
    We consider a system of two coupled nonlinear partial differential equations for describing the rotational motions of bases in both polynucleotide chains of the DNA molecule. The model was proposed by L.V. Yakushevich and it is well known that the model supports, for some operating regimes, traveling wave solutions as kink–(antikink) soliton solutions. We have tried to make some progress by performing an analysis of the classical symmetries of this model. Our study shows that the model does not have enough symmetries as to reduce the equations to ordinary differential equations. Nevertheless, the known symmetries have been useful for finding several classes of exact solutions, by imposing adequate Ansätze. Some of them are kink–(antikink) like solutions, but other ones are not traveling wave solutions. For some of the new solutions, we have carried out a qualitative study and analyzed some stability properties. We think that they could be significant for the description of the DNA molecule as well as for some other applications.DGYCYT project MTM2006-05031Junta de Andalucía FQM 201. P06-FQM-0144

    Moving breather collisions in the Peyrard-Bishop DNA model

    Get PDF
    We consider collisions of moving breathers (MBs) in the Peyrard-Bishop DNA model. Two identical stationary breathers, sep- arated by a fixed number of pair-bases, are perturbed and begin to move approaching to each other with the same module of velocity. The outcome is strongly dependent of both the velocity of the MBs and the number of pair-bases that initially separates the stationary breathers. Some col- lisions result in the generation of a new stationary trapped breather of larger energy. Other collisions result in the generation of two new MBs. In the DNA molecule, the trapping phenomenon could be part of the complex mechanisms involved in the initiation of the transcription pro- cesses

    Classical and quantum nonlinear localized excitations in discrete systems

    Get PDF
    Pre-pint tomado de ArxivDiscrete breathers, or intrinsic localized modes, are spatially localized, time–periodic, nonlinear excitations that can exist and propagate in systems of coupled dynamical units. Recently, some experiments show the sighting of a form of discrete breather that exist at the atomic scale in a magnetic solid. Other observations of breathers refer to systems such as Josephson–junction arrays, photonic crystals and optical-switching waveguide arrays. All these observations underscore their importance in physical phenomena at all scales. The authors review some of their latest theoretical contributions in the field of classical and quantum breathers, with possible applications to these widely different physical systems and to many other such as DNA, proteins, quantum dots, quantum computing, etc

    Escape dynamics in the discrete repulsive φ4 model

    Get PDF
    We study deterministic escape dynamics of the discrete Klein-Gordon model with a repulsive quartic on-site potential. Using a combination of analytical techniques, based on differential and algebraic inequalities and selected numerical illustrations, we first derive conditions for collapse of an initially excited single-site unit, for both the Hamiltonian and the linearly damped versions of the system and showcase different potential fates of the single-site excitation, such as the possibility to be "pulled back" from outside the well or to "drive over" the barrier some of its neighbors. Next, we study the evolution of a uniform (small) segment of the chain and, in turn, consider the conditions that support its escape and collapse of the chain. Finally, our path from one to the few and finally to the many excited sites is completed by a modulational stability analysis and the exploration of its connection to the escape process for plane wave initial data. This reveals the existence of three distinct regimes, namely modulational stability, modulational instability without escape and, finally, modulational instability accompanied by escape. These are corroborated by direct numerical simulations. In each of the above cases, the variations of the relevant model parameters enable a consideration of the interplay of discreteness and nonlinearity within the observed phenomenology. © 2012 Elsevier B.V. All rights reserved
    corecore